El RINA se encuentra en proceso de construcción, incorporando paulatinamente la producción científico técnica del INA. Para consultas específicas por favor escríbanos a biblioteca@ina.gob.ar.
Logo del Repositorio
 

Hydrodynamic optimization of a large pumping station with complex geometry

dc.contributor.authorSabarots Gerbec, M.
dc.contributor.authorGuizzardi, S.
dc.date.accessioned2024-04-12T16:10:15Z
dc.date.available2024-04-12T16:10:15Z
dc.date.issued2022-06
dc.descriptionFil: Sabarots Gerbec, M. Ministerio de Economía. Secretaría de Obras Públicas. Instituto Nacional del Agua. Subgerencia Laboratorio de Hidráulica. Programa de Hidráulica Computacional; Argentina.
dc.descriptionFil: Guizzardi, S. Ministerio de Economía. Secretaría de Obras Públicas. Instituto Nacional del Agua. Subgerencia Laboratorio de Hidráulica. Programa de Hidráulica Computacional; Argentina.
dc.description.abstractThe present work is focused on the study and optimization of the Inlet Pumping Station (IPS) at the Riachuelo System, designed for a 27 m3/s discharge, with six (out of 8) operative pumps, and a total power of 25MW. The approach to the study is undertaken by joint numerical and physical modelling. The first is implemented to carry out a preliminary diagnosis of key hydrodynamic aspects and to develop an efficient evaluation of alternatives for the final optimization. The physical modelling is used in parallel to analyze the optimized geometry and to perform a vast range of simulations for different operation scenarios. A numerical model developed using Computation Fluid Dynamics (CFD) was implemented to diagnose the hydrodynamic behavior of the IPS project under critical scenarios, where high concentrated streams, submerged or surface vortices, flow swirls entering the pump and non-uniform velocity distribution must be limited to achieve an optimal hydraulic performance. In addition to velocity fields post processed from CFD simulations, vortex core line detection algorithm and swirl angel (SA) were computed to identify undesired hydraulic phenomena. Ratios between SA and vortex detection indicators such as Lambda-2, Q criterion and Helicity, were obtained. The geometry was primarily optimized to reduce potential sedimentation effects and to limit the swirl angle. Although the swirl angle was reduced by 50% in the optimization process, in 2 suction pipes it results in approximately 8.5º, which is higher than the 7º admissible short-term swirl angle. The swirl angle measured in the physical model was consistently lower than the computed from CFD simulations.
dc.description.sponsorshipProceedings of the 39th IAHR World Congress. 19-24 June 2022. Granada, Spain
dc.identifier.urihttps://repositorio.ina.gob.ar/handle/123456789/636
dc.language.isoen
dc.subjectHidrodinámica
dc.titleHydrodynamic optimization of a large pumping station with complex geometry
dc.typeDocumento de conferencia
dc.type.versionVersión aceptada

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
39th_IAHR_WorldCongress_2022_Sabarots_CFD.pdf
Tamaño:
931.35 KB
Formato:
Adobe Portable Document Format