Sabarots Gerbec, M.Guizzardi, S.2024-04-122024-04-122022-06https://repositorio.ina.gob.ar/handle/123456789/636Fil: Sabarots Gerbec, M. Ministerio de Economía. Secretaría de Obras Públicas. Instituto Nacional del Agua. Subgerencia Laboratorio de Hidráulica. Programa de Hidráulica Computacional; Argentina.Fil: Guizzardi, S. Ministerio de Economía. Secretaría de Obras Públicas. Instituto Nacional del Agua. Subgerencia Laboratorio de Hidráulica. Programa de Hidráulica Computacional; Argentina.The present work is focused on the study and optimization of the Inlet Pumping Station (IPS) at the Riachuelo System, designed for a 27 m3/s discharge, with six (out of 8) operative pumps, and a total power of 25MW. The approach to the study is undertaken by joint numerical and physical modelling. The first is implemented to carry out a preliminary diagnosis of key hydrodynamic aspects and to develop an efficient evaluation of alternatives for the final optimization. The physical modelling is used in parallel to analyze the optimized geometry and to perform a vast range of simulations for different operation scenarios. A numerical model developed using Computation Fluid Dynamics (CFD) was implemented to diagnose the hydrodynamic behavior of the IPS project under critical scenarios, where high concentrated streams, submerged or surface vortices, flow swirls entering the pump and non-uniform velocity distribution must be limited to achieve an optimal hydraulic performance. In addition to velocity fields post processed from CFD simulations, vortex core line detection algorithm and swirl angel (SA) were computed to identify undesired hydraulic phenomena. Ratios between SA and vortex detection indicators such as Lambda-2, Q criterion and Helicity, were obtained. The geometry was primarily optimized to reduce potential sedimentation effects and to limit the swirl angle. Although the swirl angle was reduced by 50% in the optimization process, in 2 suction pipes it results in approximately 8.5º, which is higher than the 7º admissible short-term swirl angle. The swirl angle measured in the physical model was consistently lower than the computed from CFD simulations.enHidrodinámicaHydrodynamic optimization of a large pumping station with complex geometryDocumento de conferencia